
A canonical Feynman path integral
quantization of the Schwarzschild metric

Daniel Strano
stranoj@gmail.com

(864) 492-1459

January 16, 2017

Abstract

The Schwarzschild metric may be quantized under the usual as-
sumptions of path integral quantization as well as general relativity,
if the black holes are treated as single quantum objects representing
composite systems of gravitons. We assume that a black hole emits
a system of massless gravtions, which therefore follow the same fre-
quency to energy relation as the photon. We assume conservation of
energy-momentum and enforce it “by hand” in the act of gravitational
radiation. The rest mass of the black hole imposes a high energy cut-
off scale. Approximate real quantum effects outgoing from the event
horizon are nonzero and normalizable. The quantum gravitional field
oscillators satisfy the boundary conditions of the Einstein-Hilbert ac-
tion over outgoing null intervals with a past boundary on the event
horizon.
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1 INTRODUCTION

Applying the canonical quantum theory to the canonical modern theory of
gravity exactly, with no or few new axioms, is regarded as extremely difficult.
Quantizing the hypothetical graviton itself leads to nonrenormalizable infini-
ties that preclude a computationally useful physical description of gravity.
“Canonical quantum gravity” proper follows the Hamiltonian formulation
of mechanics. It was established decades ago [1][5], and Hamiltonian ap-
proaches based on this early work are still being actively researched up to
today [12]. The Feynman path integral formulation of quantum mechanics
applied to general relativity has led to useful results, as well [7]. Despite the
difficulties with quantizing the graviton directly, a minisuperspace approxi-
mation scheme can also at least give a normalizable canonical result, such as
in the context of the quantum geometry of the Schwarzschild solution [2].

The Feynman path integral formulation of quantum mechanics is a Hamilton-
Jacobi approach that allows us to quantize by assigning phases to mechanical
paths by their classical actions. “Naively,” one expects a canonical quantum
gravity treatment, equivalent to the Hamiltonian approach, to follow from
applying path integral quantization to the Einstein-Hilbert action of general
relativity. This is fraught with problems. The accepted quantum and rela-
tivistic theories might even be intrinsically ambiguous on points of how to
do so. However, the quantization of a black hole as a single composite object
with many gravitons leads to a useful description.

Quasi-independent gravitational quantum variation is allowed to occur
within regions that satisify the boundary conditions on the past boundary of
the event horizon. These past-bounded harmonics can be treated similarly
to the minisuperspace approximation. To achieve a normalizable descrip-
tion, conservation of energy and momentum must be inserted into the path
integral “by hand.” Satisfying these boundary conditions and enforcing con-
servation principles, a numerically useful canonical approach results, with no
new major assumptions.

We will attempt to form a composite path integral description of the
Schwarzschild solution, with spatially localized gravitational radiation, un-
der the condition that the apparent Schwarzschild radius might vary locally,
quantum mechanically.

(Note that we take Planck units as natural in all that follows.)
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2 Methods

Our goal is to locally quantize the geometry of the Schwarzschild solution,
so we allow the Schwarzschild radius rs to vary locally from region to region.
We call the varying parameter “rs.” We understand this as a scale parameter
that describes the local appearance of the geometry in terms of the classical
solution as a reference. We first define rs as the sum of the classical radius
rs and a perturbation rc.

Consider the variation of the Einstein-Hilbert action:

δAEH =

∫
V

d4x
√
−g
(
Gµνδg

µν
)

+

∫
V

d4x
√
−g∇ε

(
gµνδΓεµν − gεηδΓµµη

)
(1)

where Gµν is the inverse Einstein tensor, Γεµν are the Christoffel symbols,
gµν is the inverse of the metric tensor, and g is the metric tensor trace [11].
It is common to assume that, due to Stokes’ theorem, the second integral is
a boundary term, which we can take to vanish at infinity [4]. However, over
a finite volume, we must include the value at its boundary. Some research
suggests this boundary and its interior bulk are holographically dual [10].

Following from equation 1, in order for the Einstein-Hilbert action to be
independent over a region, the boundary term must vanish. Rewritten from
equation 1, this term is

δAboundary =

∫
v

d3x
√
h
(
Khij −Kij

)
δhij (2)

where hij is the inverse induced 3-space metric, h is its trace, and Kij is the
inverse extrinsic curvature [11].

It can be shown with rigor that no gravitational effect in general relativ-
ity can propagate faster than the speed of light [3], so we assume that our
gravitational quantum variations should propagate along null geodesics. We
therefore expect quantum variations from the classical geometry, rc, to take
the form of outgoing waves travelling at the speed of light. We define t′ as a
retarded time coordinate:

t′ '
(
t− r + rs(t, r) + rs(t, r) ln

(
r

rs(t, r)

))
. (3)

We have ignored the wave contribution from our ultimate rc, which should
average to zero if we satisfy the boundary conditions of the action. We have
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chosen the constant of integration such that t′ = t on the event horizon of
the black hole, so that the coordinate parameterizes outgoing null geodesics
from the event horizon. (We restrict our consideration here to the exterior
of the black hole.) rs can be made an arbitrary function solely of t′, since
changes in the apparent Schwarzschild radius spread at the speed of light,
but the recursive definition of t′ can be problematic.

Massless gravitons should have wavelength
√

1− rs(t,r)
r

kt′, with wavenum-

ber k. (The additional factor in front keeps proportionality with the proper
time interval passing when holding r fixed.) We are quantizing a system of
many gravitons, so we expect their amplitude functions to carry ~k units of
energy per particle. (Only discrete particles should be emitted.) If we think
of these gravitons as apparent oscillations of the rest mass of the black hole,
an oscillation between twice its mass and 0 should carry the entire rest mass
energy of the hole. The amplitudes should be constant on radially symmetric
wavefronts of constant t′, and this also conserves momentum:

rq = rc + rs(t
′) '

∫ ∞
0

2kb(k, t′) sin

(√
1− rs(t, r)

r
kt′
)
dk + rs(t

′). (4)

where the factor of 2 relates rest mass to rs. This variation implies dr
dt

=(
1− rs(t′)

r

)
for the waves at any point along their paths, which is the radial

coordinate speed of light in Schwarzschild coordinates. We have ignored a re-
cursive contribution of rc itself to the sinosoidal argument because it averages
to zero over full wavelengths, so its effect on the line element can be ignored
if we may choose limits of integration containing only full wavelengths.

Satisfying this boundary constraint, we should be able to quantize via a
Feynman path integral, parameterized by the amplitude density b(k, t′). For
any volume V that satisfies the action’s boundary constraints, the Einstein-
Hilbert action between time coordinates tn and tm is

S(n,m) =
1

16πGN

∫ tm

tn

∫
V

R
√
−g d3x dt (5)

[6], where R is the Ricci scalar,
√
−g is the volume element, and GN is

Newton’s constant. Neglecting normalization, the quantized form is∫
d~rsN−1

∫
d~rsN−2...

∫
d~rs2

N∏
n=2

exp

(
iS(n, n− 1)

~

)
(6)
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[13], where we have replaced the usual integrals over position with integrals
over a configuration “vector” for the value of rs over all space at a time step.

We have explicitly formed the Einstein-Hilbert action, the surface term,
and a Feynman path integral of the action, and analyzed them symboli-
cally and numerically with Wolfram Mathematica and a differential geome-
try package [8]. One aim was to verify their agreement with the established
theory via the Euler-Lagrange equation by recovering the classical gravita-
tional system when the functional derivative of the action vanishes. We also
determined what other conditions need to be fixed initially for the classical
solution to result from the Euler-Lagrange equation. Ultimately, we sought
a normalizable Feynman path integral expression to be used in numerical
simulation of quantum gravity. The spectrum of allowable states can be
normalized if we assume that the black hole cannot emit more gravitational
radiation than its rest mass and that a de Broglie wavelength (for a presumed
massless graviton) can be inserted by hand into the system to discretize the
allowable amplitudes.

3 Results

For the Schwarzschild metric, allow rc to be arbitrarily parameterized over
t, r, θ, and φ. In order to ultimately enforce conservation of energy, allow
rs to be arbitrarily parameterized over t. In this case, the integrand of the
boundary term is diagonal. It must vanish on the surface of the region to
quantize.

It was checked with a Wolfram Mathematica differental geometry package
[8] that the boundary term vanishes for this pertubation on all surfaces of
constant r and on any arbitrary pair of constant θ and contant φ faces with
equal circumference fraction. We recover agreement with the classical Euler-
Lagrange equations at least over full wavelengths of the perturbation along r,
so that we may ignore recursive wave contributations. For a totally general
quantum variation, we must take the action integral over the full interior or
exterior domain of r of the black hole for the functional derivative of the
classical path to be 0 as we expect.

The resulting Einstein-Hilbert action is straightforward to form with sym-

5



bolic mathematical analysis software:

1

16π

∫ π

0

∫ 2π

0

R
√
−g dθ dφ =

1

4(r − rq)2
∂2rs
∂t2

+
r3

2(r − rq)3

(
∂rs
∂t

)2

+
r

4

∂2rs
∂r2

+
1

2

∂rs
∂r

(7)

This expression seems tractable, but to simplify further, remember that
rq can be replaced by rs under appropriate limits of integration. Defining
an advanced radial coordinate r′ analogous to the retarded time t′, we can
transform the partial derivatives. (We give the action in terms of t′ and r
here after transforming the partial derivatives, which is simpler:)

1

16π

∫ π

0

∫ 2π

0

R
√
−g dθ dφ =

r3

8(r − rs(t′))3

(
drs
dt′

)2

+
(r − rs(t′))

4r

drs
dt′

+

(
2r4 − 4r3rs(t

′) + 6r2rs(t
′)2 − 4rrs(t

′)3 + rs(t
′)4
)

16r(r − rs(t′))2
d2rs
dt′2

(8)

Notice that the action is vacuum for vanishing rs time derivatives. Although
the action is zero in that case, remember that each variation is a distinct (vac-
uum) metric. When rs does not change, any configuration of gravitational
waves is an extremum of the action that is energy degenerate with the clas-
sical Schwarzschild solution. (Recall that the Einstein field equations do not
directly track the gravitational contribution to the stress-energy-momentum.)
Also remember that that rs(t

′) is arbitrary in a Feynman path integral, and
that it implies information about rs traveling at exactly the speed of light.

Our generalized position appears to be the collective graviton amplitude,
and our generalized momentum appears to be proportional to the change
in the collective amplitude, which implies a change in rs. This suggests
noncommuting amplitude and amplitude time derivative operators in the
Hamiltonian formulation.

When the derivatives of rs vanish, so does the action. This implies that
any and all configurations of the vacuum field are solutions to the Einstein
field equations, with degenerate action equal to the classical Schwarzschild
solution’s. However, “keeping book by hand,” the black hole’s Schwarzschild
radius should have changed in the past due to radiation, tracing a radiative
surface back in time to t′ = t. As such, the past mechanics are compli-
cated and imply real radiated gravitons. If the Schwarzschild radius can-
not change, though, as we might expect for fundamental quantum particles,
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Figure 1: Schwarzschild action vs. retarded time and advanced radius for rs = 1,
drs
dt′ = 0.5, and d2rs

dt′2 = 0.5, (with c = 1, GN = 1, ~ = 1)

gravitons must be immediately radiated back out when absorbed. In the case
of constant rs, define an incoming advanced time coordinate:

t′′ '
(
t+ r − rs − rs ln

(
r

rs

))
, (9)

where, again, t′′ = t on the event horizon. Add an incoming rs perturbation
to our original rq:

rq = rc + rs ' rs +

∫ ∞
0

2kb(k, t′) sin

(√
1− rs

r
kt′
)
dk

+

∫ ∞
0

2kb(k, t′′) sin

(√
1− rs

r
kt′′
)
dk. (10)

If the gravitating object cannot change its rest mass, as is ostensibly the
case with a fundamental quantum particle, then incoming radiation must be
immediately turned out as outgoing. Our incoming radiation is unrealisti-
cally symmetric, but remember that we have constrained the net momentum
(and angular momentum) as zero, requiring this symmetry. This form of the
perturbation preserves time reversal symmetry and therefore represents an

7



infinite family of solutions to the Einstein field equations with vacuum action
equal to the classical solution’s.

Common definitions of the gravitational energy, such as via the Landau-
Lifshitz pseudotensor [9], make it equal to −rs/2 in total in this case, such
that the gravitons should not be able to radiate more negative energy than
this. Gravitons should have their stress-energy-momentum counted in one
or more appropriately chosen pseudotensor contributions, and a given pseu-
dotensor should maintain consistence with the distribution of tensorial stress-
energy-momentum. This picture is consistent with a gravitational wave car-
rying negative energy in the pseudotensor contribution while imparting pos-
itive kinetic energy to a test oscillator with rest mass. Therefore, any real
gravitational radiation via our perturbation should only occur with radia-
tion of (positive) gravitating rest mass. This implies a reversal of the overall
sign of the simple harmonic oscillator action, which has no effect on the (ex-
tremal) classical equations of motion. An additional constraint is implied
between the amplitude functions and rs(t

′), that the change in the gravi-
tational energy cannot cause the black hole to radiate more than its total
classical energy. The amplitudes b(k, t′) imply an energy for the gravitational
radition. Further, the speed of light propagation of b implies a form b(k, t, r)
The energy radiated can be found from a surface integral of the amplitude
flux at the event horizon. The integral is trivial, since the number functions
already imply particles spread over spherical shells with volume:

dE

dt
=

∫ ∞
0

~k
∂b(k, t, r)

∂t

∣∣∣∣
r=rs(t,r)

dk. (11)

(The only surface of interest in this case is the event horizon) This constrains
the parameterization of rs:

drs
dt

= −2GN
dE

dt
. (12)

Addtionally, the amplitude functions are further constrained by the require-
ment that rs(t

′) is never less than zero, i.e. that the black hole can’t emit
more than its total rest mass energy equivalent in the act of gravitational ra-
diation. Careful numerical inspection reveals that this does not equal the en-
ergy implied by the Einstein-Hilbert action, but remember that the Einstein
field equations track a stress-energy-momentum tensor without gravitational
contribution and that energy is not locally conserved without accounting for
this contribution, such as by an appropriate pseudotensor.
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4 DISCUSSION

Computational verification of the vanishing boundary term is straightforward
and was accomplished with a direct insertion of the ansatz into the bound-
ary constraints with a Mathematica differential geometry package [8]. The
significance of a vanishing boundary term is that the bounded region may be
varied smoothly but independently while holding the boundary fixed, imply-
ing infinitesimal field oscillators.

We can quantize the radiation, i.e. the action with vanishing rs time
derivatives, with a Feynman path integral of the Einstein-Hilbert action.
For the case of vanishing derivatives, such as when the rest mass of a fun-
damental quantum particles is held fixed, the result is trivial: all values of
the perturbation give the same action as the classical solution. As such, all
field configurations should be equally likely around a gravitating object that
cannot radiate mass, such as a stationary proton as in the hydrogen model.
In the case of real radiation, we enter the action given above into a path inte-
gral and vary rs(t

′) arbitrarily under the constraint that information about
changes in the radius propagate at the speed of light. The high energy end
of the theory is avoided since a maximum k is imposed by the requirement
that rs cannot be less than 0.

The quantum objects of our treatment are regions of spacetime rather
than discrete gravitons. That is, our approach has been to quantize a macro-
scopic system with many gravity particles without direct recourse to the
fundamental gravitational field. The use of a quantum formalism describing
a boson is appropriate, for the statistics seem to be immaterial to the dis-
tinguishable quantized spacetime regions, regardless of whether they would
be appropriate for the graviton itself. For a massless graviton, which trav-
els like light, a reasonable form for the energy per quantum appears to be
the usual E = ~k of a massless quantum particle. However, as per usual
for the Einstein field equations, local conservation is not apparent without a
pseudotensor contribution to the stress-energy-momentum.

5 CONCLUSIONS

We can treat gravitating systems quantum mechanically if we assume a com-
posite quantum object with internal degrees of freedom for a discrete, mass-
less, bosonic graviton gas. We also must perform certain “book-keeping”
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of conserved quantities in an arguably ad hoc manner, though the result
therefore properly conserves. It is appropriate to ignore wave-like recursive
quantum contributions of a time-varying Schwarzschild radius over limits of
integration which recover on average the classical Euler-Lagrange equation
for general relativity, i.e. over full variation wavelengths. The expression for
the action in the implied Feynman path integral shares the essential trans-
formation invariances of the classical system, since it is written in terms
of the classical coordinates rather than operators. (However, all modes of
gravitational radiation need to be treated to show full exact Lorentz invari-
ance.) The perturbed metric with matched incoming and outgoing waves
represents an infinite family of solutions to the Einstein field equations with
energy degenerate to the classical solution. Momentum, angular momentum
and possibly stress quantum variations of black holes must still be treated
fully in a complete theory of gravitationally interacting point-like particle
mechanics.
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